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ABSTRACT
Exploiting the e�ciency and stability of Position-Based Dynamics
(PBD), we introduce a novel crowd simulation method that runs at
interactive rates for hundreds of thousands of agents. Our method
enables the detailed modeling of per-agent behavior in a Lagrangian
formulation. We model short-range and long-range collision avoid-
ance constraints to simulate both sparse and dense crowds. The local
short-range interaction is represented with collision and frictional
contact between agents, as in the discrete simulation of granular
materials. We incorporate a cohesion model for modeling collective
behaviors and propose a new constraint for dealing with potential
future collisions. Our new real-time crowd simulation method is
suitable for use in interactive games.
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1 INTRODUCTION
Crowd simulation is useful in visual e�ects, animations, and games.
E�ciently simulating the motions of numerous agents with realistic
interactions among them has been a major focus of research in re-
cent decades [Thalmann 2007]. Among various modeling considera-
tions, collision avoidance remains challenging and time consuming.
Collision avoidance algorithms can be classi�ed into discrete and
continuum approaches [2013]. Continuum approaches, such as the
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Figure 1: Our fast, robust, stable, and easily implemented
method, ideally for use in games, simulates both sparse and
dense groups of agents at interactive rates.

technique proposed by Narain et al. [2009], have proven e�cient
for large-scale dense crowds, but are less suitable for sparse crowds.
Force-based discrete approaches, such as the recently proposed
power-law model [2014], are well suited for sparse crowds, but can
be computational expensive and may require smaller time steps
due to explicit time integration.

We employ Position-Based Dynamics (PBD) [Müller et al. 2007;
Stam 2009], as an alternative discrete algorithm for simulating both
dense and sparse crowds. While more carefully designed models,
such as the social force model [Helbing and Molnar 1995] and the
power law model [Karamouzas et al. 2014], can yield realistic crowd
behaviors, they occasionally require elaborate numerical treatments
to remain stable and robust. Given the success of PBD in simulating
various solid and �uid materials in real-time physics, our work
further extends the idea to crowd simulation.

We adopt the PBD framework since it is a real-time, uncondi-
tionally stable, implicit scheme. To deal with anticipatory agent
contact, we introduce novel long-range collision avoidance con-
straints. Additionally, to approximate collective group behavior, we
adopt PBD constraints used in modeling granular material and �u-
ids. Due to the �exibility of PBD in de�ning positional constraints
among particles, our proposed framework provides a new platform
for artistic design and control of agent behaviors in crowd modeling
and animation.

Relative to the arti�cial life approach [Shao and Terzopoulos
2007] in the broader context of multi-human simulation, our ap-
proach is posited toward the opposite end of the complexity/�delity
spectrum. The bene�t of our work is that it o�ers a numerical frame-
work for crowd simulation ideally for use in interactive games,
which is fast, robust, stable, and easy to implement.
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2 METHOD
Our position-based formulation includes several modi�cations to
the standard PBD scheme as well as additional constraints for short-
range and long-range collision avoidance between agents. Orthog-
onal to our constraint-based scheme, higher-level agent behaviors
result from roadmap velocity planning at the agent level.

Desired Velocity. In agent locomotion, it is desirable to include the
inertia e�ect before predicting an agent’s desired velocity. Denoting
the preferred velocity given the planner withv

p
i , we calculate the

agent velocityvbi as a linear blending betweenv
p
i and the current

velocityvn
i , as follows:

vbi = (1 − α )vn
i + αv

p
i , (1)

where α ∈ [0, 1]. We set α = 0.0385 in all our simulations.

Frictional Contact and Cohesion. We model local particle contacts
with an inequality distance constraint as in standard position-based
methods:

C (xi ,x j ) = ‖xi − x j ‖ − (ri + r j ) ≥ 0, (2)

where ri and r j are the radii of agents i and j. To model frictional
behavior between neighboring agents, we further adopt kinematic
frictions as described in [Macklin et al. 2014].

Coherence. To encourage coherent agent motions, we add the
arti�cial XSPH viscosity [Macklin and Müller 2013] to the updated
agent velocities. For our simulations, with particles with radius 1,
we use h = 7 and c = 217.

Long Range Collision. Karamouzas et al. [2014] describe an ex-
plicit force-based scheme for modeling crowds. Similarly to their
power law setting, the leading term is the time to collision τ, de�ned
as the time when two discs representing particles i and j touch each
other in the future (see [Karamouzas et al. 2014] for more details).
We estimate a future collision state between i and j using τ, with
τ̂ = ∆t ∗ bτ/∆tc, where b·c denotes the �oor operator. This is simply
clamping τ to �nd a discrete time spot slightly before the predicted
contact. With τ̂, we have

x̂i, j = xni, j + τ̂vi, j . (3)

We de�ne the colliding positions with

˜xi, j = xni, j + τ̃vi, j , (4)

where τ̃ = ∆t + τ̂. We enforce a collision free constraint on x̃i and
x̃ j . To prevent over-sti� behaviors, we de�ne the sti�ness to be
ke−τ̂

2/τ0 , where k is a user-speci�ed constant.

Sliding Model. The total relative displacement is

d = (x̃i − x̂i ) − (x̃ j − x̂ j ), (5)

which can be decomposed into contact normal and tangential com-
ponents as follows:

dn = (d · n)n, dt = d − dn , (6)

where n = x̃i−x̃ j
‖x̃i−x̃ j ‖

is the contact normal. The long-range collision
model will cause agents to slow down due to motion along the con-
tact normal from the collision resolve, which is often undesirable
in dense scenarios (Fig. 1). Hence, we preserve only the tangential

Figure 2: Bears and rabbits (left) and Bottleneck (right) sce-
narios.
component in the positional correction to x∗i, j . This results in a slid-
ing behavior in response to the predicted collision, which prevents
agents from being pushed back into a dense �ow.

Acceleration Limiting. After the constraint solve, we further
clamp the maximum speed of the agents for a more smooth motion.

3 RESULTS
We implemented our framework in CUDA on an NVIDIA GeForce
GT 750M, with ∆t = 1/48 sec for all experiments (2 substeps per
frame). We solve constraints in parallel, employing a Jacobi solver
with a delta averaging coe�cient of 1.2 (see [Macklin et al. 2014] for
additional details). For all simulations, we use 1 stability iteration
to resolve possible remaining contact constraints from the previous
time step, and 6 iterations for the constraint solve loop.

We demonstrate the robustness of our position-based frame-
work in a variety of scenarios (Figs. 1, 2). Sparse and dense passing
scenarios demonstrate two groups of agents locomoting in oppo-
site directions, passing each other. In Fig. 2, the bears and rabbits
demonstration showcases how a Lagrangian PBD scheme may be
employed to model agents of di�erent sizes, whereas in the bot-
tleneck demonstration, a multitude of agents must pass through a
narrow corridor to reach their goal.

4 CONCLUSION
We adapted Position-Based Dynamics (PBD) as an alternative dis-
crete algorithm for simulating multi-agent dynamics. Our novel
method enabled demonstrations of interesting group interactions,
such as groups passing each other seamlessly, as well as the forma-
tion of tra�c lanes and subgroups with minimal interference. We
also demonstrated our method on groups of agents of various sizes,
densities, and target locomotion goals.
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