
Research Statement — Tomer Weiss

I work on interactive and learning-based algorithms for simulation and modeling. My research has been recognized

by the ACM SIGGRAPH Conference on Motion in Games, where I received the Best Paper Award1 in 2017, by the ACM

Symposium on Interactive 3D Graphics and Games, where I received the Best Student Paper Award in 20252, and by

ACM Symposium on Computer Animation, where I received the Best Presentation Paper Award in 20253. Overall, my

research contributions are in simulation of physics-based AI agents4,5,6,7,8,9,10,1,11, deep learning and reinforcement

learning12,13,10,14,15,16,17, and architectural scene analysis and synthesis,14,18,19,17,20,16,21,22,23,15. I work on:

1. Crowds, Groups, and Multi-Agent Motion Dynamics

Multi-agent simulation has applications in entertainment, pedestrian analysis, urban planning, robotics, and autonomous

systems. A crowd is a collection of independent, self-actuated agents. Each agent has individual

Agent

navigational goals in this shared environment. Since agents share their environment, they can

interact and collide with each other. Agent movement is controlled by a navigation algo-

rithm, which must ensure that agents progress towards their goals, while avoiding collisions.

However, computing collision-free agent motion is difficult due to the complexity of such dynamic inter-

actions. Field experiments are one important avenue for testing a navigation algorithm. A more efficient

and less costly approach is to conduct virtual simulation experiments, which allow quick insight into the

dynamics and performance of such navigation algorithms. Furthermore, a simulation allows us to easily test

“what-if” scenarios.

Multi-Agent Crowds

Agents in a simulation run through a continuous cycle of sensing and acting, where each

cycle correlates to a time step. At the beginning of each cycle, each agent independently

computes a trajectory to its goal, while avoiding collisions with other agents or obstacles. In

addition to collision-free movement, a simulation should capture both individual and group

behavior observed in real crowds, while being computationally interactive.

Physics-based Crowd Simulation

One core problem in multi-agent dynamics is to simulate dense, large crowds interactively. We proposed to use

Position-Based Dynamics (PBD), in conjunction with novel geometry-based crowd dynamics constraints to simulate up

to 100,000+ agents in real time1. We achieved this using GPU parallelization of the PBD solver (Fig. 1).

Later, we proposed additional novel PBD constraint for simulating crowds moving in groups and formations6, and

for simulating agents that are not disc-shaped, but with capsules, since a human figure projection on the ground plane

(a) A group of agents passing through a narrow corridor. (b) Two groups exchanging positions.

Figure 1: Emergent phenomena in crowd simulation. Our results1 recreate different phenomena observed in pedestrian crowds,

without any scripting or other user-directed control. These phenomena include: (a) clogging and arching near bottlenecks,24 (b)

groups self-organizing into lanes, 25 with stable and real-time performance for 100,000+ individuals. These results are made possible

by framing the crowd motion as a constraint optimization problem, which is then efficiently solved using a GPU.



approximates a capsule more than a disc5. Such capsule approximation for agents allows more captures angular motion

and turns more accurately. In addition to PBD, my group has also researched how other physics-based simulation

approaches such as Projective Dynamics can be reformulated to simulate crowds26. We demonstrated that such approach

leads to quick resolution of dense opposing crowd flows, which is notoriously difficult to compute with previous work.

Learning-based Crowd Simulation

Deterministic physics-based rules often fail to capture the somewhat stochastic nature of crowd dynamics. To attach this

challenge, we proposed to learn the most-preferred crowd simulation behaviors from crowd-sourced votes via Bayesian

optimization. Our method uses deep reinforcement learning for simulating crowds, where crowdsourcing is used to

select policy hyper-parameters (Figure 2). Training agents with such parameters results in a crowd simulation that is

preferred to users. We demonstrate our method’s robustness in multiple scenarios and metrics, where we show it is

superior compared to alternate policies and prior work13.

Other Crowds Research

Outside of pedestrian crowds, we also simulated 3D crowds9, including robot-like agents and ant swarm aggregations3,27.

Understanding the dynamics of ant swarms and bacteria colonies is important for many applications from health, traffic

to manufacturing. This work modeled ants as self-actuating PBD particles, which spontaneous form elastic links and

also maintain fluid-like properties such as maintaining a certain density within an aggregation (Figure 3).

Other work includes innovative way finding, and accelerating the rendering a crowd simulation. To achieve higher

computational rates of crowd simulation, we proposed a Perceptual Foveated Rendering approach, where instead of

rendering each agent with the same fidelity, we render agents that a viewer focuses on with a higher resolution, and

crowds not in the area of Fovea with lower resolution (Figure 3). This is done by modifying the animation refresh rate of

agents limbs2. In regards to way finding, we proposed a path planing method that allows groups of agents to maintain

their formation while navigating an obstructed scene. This is done by constructing a vector field encodes the supported

formations, and allows switching to alternative formations requiring less clearance7.

Figure 2: RL for multi-agent navigation13.

My group has been working on extending these results to multi-

ple crowd benchmarks,11 including agent navigation in 3D spaces,9,

formation control, and robotics applications.13 In our latest results,

we show how deep reinforcement learning is valuable as a motion

suggestion engine where the simulation mechanics are controlled

by our method.1

2. Scene Synthesis and Style Classification

Virtual worlds are challenging to construct, requiring professionals with extensive training in 3D modeling software.

My lab’s research accelerates 3D content creation with contributions in the following:

Layout Synthesis

We have developed computational methods for creating spaces using fast optimization and generative AI21,17

In the optimization approach, users provide a set of 3D objects and spatial arrangement constraints from which

our method computes layout proposals (Figure 4). This is achieved by viewing layout synthesis through the lens of
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Figure 3: Recent multi-agent research of our lab includes simulating crowds as capsule-shaped particles which more accurately

capture the pedestrian profile than discs, simulating agents moving in formation (left), accelerating rendering of crowd simulations

using foveated rendering (middle), and simulating non-human, 3D crowds such as ants (right).

deformable body simulation. Both layouts and deformable bodies can be described by geometric constraints, which

should be satisfied for a layout to be realistic, or for the movement of a body to be plausible. Both cases can be tackled

using continuous optimization procedures. A layout synthesis solution is then an arrangement that satisfies such

constraints28. The novelty of our work21 is in enabling real-time, interactive synthesis of layouts, even for large scale

scenes, which were previously intractable via traditional optimization-based approaches.29 This work was later used to

create a dataset of 3D spaces, which is widely used today for multiple deep learning tasks.30

System for designing style-compatible spaces. 19,15

We also developed a deep-learning generative transformer approach

for scene synthesis17, by formulating the synthesis task to be similar to

text sequence generation. An interior is represented by a series of tokens,

where the goal of the neural network is to generate a sequence of tokens

that represent a realistic space. Our main innovation contrary to other

transformer-based scene synthesis (and data-driven) work is that our synthesis improves on the quality of rooms

available in the original dataset. This is done by using additional terms in the loss function, which encode ergonomic

and geometric common-sense principles, such as the a table should be within reach of a person sitting.

Most recently, we have extended our style based work to Virtual Reality, and built interactive systems for quick

synthesis of furniture in interior rooms based on interior design rules19,18.

Figure 4: Left: Our results 21 in 3D scene synthesis are faster by an order of magnitude than previous probabilistic methods and allow

real-time, interactive synthesis of scenes that were previously intractable. Given input positional constraints and selected layout

items, the algorithm rapidly outputs a variety of synthesized layouts. Right: We proposed a data-driven method for layout synthesis

that combines interior expert knowledge with a data-driven generator based on a Deep Neural Network Transformer architecture.17

The synthesized layouts integrate desirable properties not present in the original dataset.
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Figure 5: Left: Given style-labeled images of 3D objects and rooms, we trained a Siamese network to predict image styles. 15 After the

network is trained, the stylistic compatibility between 3D objects is measured by selecting the nearest neighbors within the network’s

embeddings for each image displaying the 3D object. Right: Examples of style labels. Our work can predict the predominant style of

a space, which is useful for content creation, design, and retail.14

Virtual Content Compatibility

Objects may not always fit a space, regardless of their function, due to differing visual features. For example, how well

would a wheel fit into a car design? To understand this question better, we used a siamese31, imaged-based classification

deep-learning approach for estimating 3D object style.15 To accomplish this, we used (i) images where each object

appears in multiple “styled” backgrounds (Figure 5), which is annotated with multiple style votes by experts, in contrast

to other work that relies on images of objects presented in an isolated context32, or solely on object geometry33, (ii)

comparison labels that encode the style spectrum of each object in a relative manner. For example, a label indicates

whether one table is more modern than another table.

Along this line of work, we also classified room styles with a similar neural network14, furnishing rooms with

stylistically similar objects in VR19, and how room clutter affects the perception of space34.
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