
Fast, Scalable Layout Synthesis

Tomer Weiss, Alan Litteneker, Noah Duncan∗, Chenfanfu Jiang†, Lap-Fai Yu‡, Demetri Terzopoulos

Abstract

The arrangement of objects in an interior layout can be
challenging for non-experts, as is affirmed by the existence
of design professionals. Most research into the automation
of this task has yielded methods that can synthesize layouts
of objects respecting aesthetic and functional constraints
that are non-linear and competing. These methods usually
adopt a purely stochastic scheme, which samples from dif-
ferent layout configurations, a process that is slow and in-
efficient. We propose an alternative physics-based, continu-
ous layout synthesis technique, which results in a significant
gain in speed and is readily scalable.

1. Introduction
In this abstract, which summarizes [6], we focus on in-

terior layout synthesis, in which a set of objects is to be
arranged in an open space. For example, to find a desirable
layout for a living-room, one must consider the visibility of
the television, a suitable separation of sofas, and access to
adjacent rooms, among other factors that differ according
to taste and style. The goal is to position and orient the ob-
jects such that they satisfy several functional and aesthetic
criteria.

Recently, researchers have proposed several methods for
synthesizing layouts that pose layout synthesis as a highly
non-convex optimization problem subject to numerous con-
straints [8, 4, 7]. Due to the complex nature of these prob-
lems, previous work applied a probabilistic scheme to sam-
ple viable layout candidates. Stochastic methods, such as
Markov chain Monte Carlo (McMC) methods [1] are pre-
ferred because the constraints are often difficult to express
as differentiable functions. Unfortunately, the majority of
these techniques become inefficient when confronted with
large numbers of objects.

To overcome this problem, we propose a continuous
framework for layout synthesis based on Position-Based
Dynamics (PBD) [5], a framework designed to simulate

T. Weiss, A. Litteneker, D. Terzopoulos are with the University of
California, Los Angeles.
∗ N. Duncan is with Clovi, Inc.
† C. Jiang is with the University of Pennsylvania.
‡ L.-F. Yu is with the University of Massachusetts Boston.

Figure 1: A tightly-packed bedroom. Our method produces
different layout suggestions by starting from different ran-
dom initial conditions.

physical models in real time scenarios. Our main obser-
vation is that there are commonalities between the elas-
tic simulation of deformable objects and layout synthe-
sis. Elasticity penalizes the deformation of an object—
the energy increases proportionally to the magnitude of the
deformation—and layout synthesis penalizes the magnitude
of constraint violation. Both can be expressed as optimiza-
tion problems, and both can be tackled using continuous
optimization procedures. Our new, continuous approach en-
ables the fast generation of dense large-scale layouts that are
intractable using previous approaches.

2. Method
Our method takes as input an environment, a set of ob-

jects, and a set of layout constraints. After randomly ini-
tializing the orientations and positions of the objects, our
method then iteratively modifies the state of each object so

1



as to satisfy competing constraints, reaching convergence
when all constraints are adequately satisfied.

2.1. Setup

A layout is represented by a set of N oriented particles
and M constraints. Each particle i, which determines the
center of a corresponding 3D object mesh, has a position
pi, an orientation θi, a mass mi, and corresponding inverse
mass wi = 1

mi
.

A constraint consists of the number n of participating
particles, a scalar constraint function C, a stiffness param-
eter k (where 0 ≤ k ≤ 1), and a constraint type (either
unilateral or bilateral).

A bilateral constraint is defined as

C(p1, ..., pn, θ1, ..., θn) = 0,

while a unilateral constraint is defined as

C(p1, ..., pn, θ1, ..., θn) ≥ 0,

where the arguments of both functions denote the positions
and orientations of the particles involved in the constraint.

2.2. Layout Synthesis

Given a constraint C and a particle i which is involved in
the constraint, we derive a positional correction ∆pi applied
to particle i. According to Muller et al. [5], this correction
is derived by approximating each constraint function using

C(pi + ∆pi) ≈ C(pi) +∇C(pi) ·∆pi. (1)

We employ PBD’s mechanism for solving a layout’s po-
sitional constraints via approximation, with two different
approaches for satisfying constraints. Each constraint is ei-
ther solved independently and projected, or is solved in a
batch with other constraints, averaged together, and then
projected. In the batched case, we average the positional
correction by the number of constraints affecting the layout
item, with a delta averaging coefficient of 1.2, as suggested
by Macklin et al. [3].

For constraint C, the positional correction for particle i
is

∆pi = −skwi∇pi
C(p1, ..., pn), (2)

with scaling factor

s =
C(p1, ..., pn)∑

i wi ‖∇pi
C(p1, .., pn)‖2

, (3)

and stiffness parameter k that is adjusted at each iteration.
The stiffness of each constraint determines the importance
of that constraint; i.e., lower stiffness leads to smaller posi-
tional correction. We modified the original stiffness formula
suggested by Muller et al. [5] to k′ = 1 − (1− k)

M/ns ,
where ns is the iteration number and M ≥ 1. Parameter M
determines the rate by which the constraint C approaches 0.

Figure 2: Our method produces different layout suggestions
(right) by initializing random initial conditions (left).

2.3. Constraint Types

In order to fit the problem of layout synthesis into a PBD
framework, we have adapted a number of common aesthetic
layout standards [2] into PBD compatible constraints, only
a subset of which are briefly described here. Please refer to
[6] for a complete set of layout constraints and more thor-
ough descriptions.

2.3.1 Pairwise Distance

In interior design, two furniture items i and j (e.g., a chair
and a table) are often required to be at a certain distance
from each other in order for the layout to be deemed com-
fortable. We utilize the bilateral stretching constraint from
PBD to represent a desired distance d between particles i
and j as

C(pi, pj) = ‖pi − pj‖ − d. (4)

2.3.2 Heat Point

For a group of objects, the heat point is the desired position
of the objects’ center of mass (eg., recliners around a tele-
vision). Given a user supplied heat point position p̂, this is
represented as a bilateral constraint where

C(p1, p2, ..., pn) =

∥∥∥∥∥
∑n

j=1 pjmj∑n
j=1mj

− p̂

∥∥∥∥∥
2

. (5)

2.3.3 Collision

As most users want realistic layouts, we generally want to
avoid overlapping or colliding objects. To that end, we
check for collisions between objects and, if found, resolve
each collision as a unilateral distance constraint between
the bounding spheres that best fit the objects’ underlying
meshes.

Since checking for all pairwise object collisions is com-
putationally expensive, we employ a spatial hash in order to
reduce the number of collision checks.

2.3.4 Traffic Lanes

Objects should be arranged in a layout that accommodates
traffic lanes, space between objects to allow easy access



Figure 3: A variety of theater layouts synthesized with our
method.

(e.g., different seating tiers) [2]. To this end, we define
a clearance between a vector projected from an object at
an angle towards another object. This clearance is imple-
mented as a unilateral distance constraint between pj and a
vector v, which starts at pi and points in direction θ, as

C(pi, pj) =
∥∥pvproj − pj

∥∥− d, (6)

where pvproj is the point on vector v that is closest to pj ,
and d > 0 is the desired distance from vector v. Note that
pvproj depends both on the pi and pj , and is recalculated if
pi or pj change. We consider pvproj a ghost particle that is
rigidly attached to pi. Hence, any positional correction that
impacts pvproj is applied to pi. This constraint creates the
effect of pathways; e.g., in the theater example of Fig. 3.

2.3.5 Parenting and Grouping

Layout items can belong to different groups, such as seating
tiers in a theater, or chairs around a table. In our framework,
a set of objects may be represented by a group particle.
Multiple group particles may have constraints expressed be-
tween them, or be grouped into a super group particle.

Furthermore, we can hierarchically define internal group
layout constraints. For example, suppose a user desires a set
objects to be arranged along a curve (eg., the seating tiers in
Fig. 3). As each group member is associated with a point
on the curve, we can use the distance along the curve to de-
rive an ordering of objects that can accelerate the solving of
other internal group constraints, such as pairwise distance.

3. Results
Our method is implemented in Python and Cython on

a 2.5 GHz Intel i7 Macintosh system. For all our demos,

the initial object locations and orientations were set ran-
domly (Fig. 2). The method terminates the iterative pro-
cedure when there has been no improvement upon the best
observed layout energy for 50 iterations.

We demonstrated our method’s efficacy with experi-
ments that include a tightly-packed bedroom and a theater
scene with various seating arrangements. Additionally, we
also compared our run-time with that of a baseline McMC
method, based on code obtained from the authors of [8].
The tightly-packed bedroom contained 12 objects (Fig. 1),
and ran 0.67 seconds versus 22.31 seconds for the baseline
McMC approach. The theater (Fig. 3) contained between
169 to 246 objects, and ran 0.48 to 39.5 seconds versus at
least 5852 seconds for the baseline McMC approach that
managed to terminate.

4. Conclusion
We proposed an alternative, fast and scalable method

for layout synthesis, inspired by Position-Based Dynamics
(PBD). Our novel method enables interactive layout synthe-
sis, which was slow to intractable using previous stochastic
methods, especially on dense layouts with many objects.

References
[1] S. Chib and E. Greenberg. Understanding the

metropolis-hastings algorithm. The American Statisti-
cian, 49(4):327–335, 1995. 1

[2] C. Deasy and T. E. Lasswell. Designing Places for Peo-
ple. Whitney, 1990. 2, 3

[3] M. Macklin, M. Müller, N. Chentanez, and T. Kim.
Unified particle physics for real-time applications.
ACM Trans Graph, 33(4):104, 2014. 2

[4] P. Merrell, E. Schkufza, Z. Li, M. Agrawala, and
V. Koltun. Interactive furniture layout using interior de-
sign guidelines. In ACM Trans. Graphics, volume 30,
page 87. ACM, 2011. 1

[5] M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff.
Position based dynamics. Virtual Reality Interactions
and Physical Simulations (VRIPHYS), 18(2):109–118,
2007. 1, 2

[6] T. Weiss, A. Litteneker, N. Duncan, C. Jiang, L.-F. Yu,
and D. Terzopoulos. Fast, scalable layout synthesis.
IEEE Trans. Vis. Comp. Graph., 2018. Under review.
1, 2

[7] Y.-T. Yeh, L. Yang, M. Watson, N. D. Goodman, and
P. Hanrahan. Synthesizing open worlds with constraints
using locally annealed reversible jump mcmc. ACM
Trans. Graphics, 31(4):56, 2012. 1

[8] L.-F. Yu, S. K. Yeung, C.-K. Tang, D. Terzopoulos, T. F.
Chan, and S. Osher. Make it home: Automatic opti-
mization of furniture arrangement. ACM Trans. Graph-
ics, 30(4):86, 2011. 1, 3


