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a b s t r a c t 

We introduce a crowd simulation method that runs at interactive rates for on the order of a hun- 

dred thousand agents, making it particularly suitable for use in games. Our new method is inspired by 

Position-Based Dynamics (PBD), a fast physics-based animation technique in widespread use. Individual 

agents in crowds are abstracted by particles, whose motions are controlled by intuitive position con- 

straints and planning velocities, which can be readily integrated into a standard PBD solver, and agent 

positions are projected onto constraint manifolds to eliminate colliding configurations. A variety of con- 

straints are presented, enabling complex collective behaviors with robust agent collision avoidance in 

both sparse and dense crowd scenarios. 

© 2018 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Crowd simulation has become commonplace in visual effects

for movies and games. However, the real-time simulation of nu-

merous agents in virtual environments and the simulation of in-

teractions among agents continues to attract the attention of re-

searchers [1,2] . A large number of crowd simulation algorithms

have been proposed, mostly focusing on specific requirements,

such as defining the scenario to be simulated, modeling the crowd

to be simulated, computing the movements of the characters, and

rendering the characters. We address the task of computing the

movements of characters; i.e., in each time step of the simulation,

each character must determine in which direction to move such

that realistic individual and collective behaviors result. While ap-

proaches such as the social force model [3] and the power law

model [4] can yield some realistic crowd behaviors, they often re-

quire elaborate numerical treatments to remain stable and robust,

especially for dense crowds ( Fig. 1 ). 

We show how Position-Based Dynamics (PBD) [5] can be

adapted as an alternative algorithm for simulating both dense and

sparse crowds, providing a high level of control and stability. Due

to its simplicity, robustness, and speed, PBD has recently become

popular in physics-based computer animation, particularly in the

interactive environments of computer games. In view of the suc-

cess of PBD in simulating various physical phenomena such as

solid and fluid materials in real-time, our work further extends the
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pproach to crowd simulation, ideally for use in games and other

nteractive applications. 

Our objective is a numerical framework for crowd simulation

hat is robust, stable, and easy to implement. Due to the flexibil-

ty of PBD in defining positional constraints among particles, our

ramework provides a new platform for artistic design and control

f agent behaviors in crowd modeling and animation. 1 For exam-

le, with positional constraints we prevent agents from colliding

nd encourage collective crowd behavior. Furthermore, a PBD ap-

roach provides an unconditionally stable implicit scheme. Even

hough it may not always converge to the solution manifold, a

onlinear Gauss–Seidel-like constraint projection enables the algo-

ithm to produce satisfactory results with modest computational

ost suitable for real-time applications. Additionally, the resulting

umerical scheme is easy to implement and does not require the

olution of linear systems of equations. 

This paper, which is an extended version of [7] , makes the fol-

owing contributions: 

• We show how crowds can be simulated within the PBD frame-

work by augmenting it with non-passive agent-based planning

velocities. 
• We adopt the position-based frictional contact constraints of

granular materials to model local collision avoidance among

nearby agents. An XSPH viscosity term is also added to approx-

imate coherent and collective group behavior. 
1 See [6] for a closely-related PBD approach to layout synthesis. 

https://doi.org/10.1016/j.cag.2018.10.008
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Fig. 1. Our PBD-based crowd simulation method animates dense groups of agents 

at interactive rates. 
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• We develop a novel long-range collision avoidance constraint to

deal with anticipatory collisions. Our model permits the natural

development of agent groups. 
• We demonstrate “multi-species” crowd coupling by supporting

spatially varying Lagrangian physical properties. 

The remainder of the paper is organized as follows:

ection 2 surveys relevant prior work on crowd simulation

nd PBD. Section 3 overviews our algorithmic approach and

resents the algorithmic details and detailed constraint design. We

resent our simulation results in Section 4 . Section 5 discusses our

ethod’s limitations and future work, and Section 6 presents our

onclusions. 

. Related work 

.1. Crowd simulation 

Among various considerations, collision avoidance between

gents in a moving crowd remains challenging and time consum-

ng. Collision avoidance algorithms can be classified into discrete

nd continuum approaches [8] . Continuum approaches [9,10] have

roven efficient for large-scale dense crowds, but are less suitable

or sparse crowds. Force-based discrete approaches, such as the re-

ently proposed power-law model [4] , are well suited for sparse

rowds, but can be computationally expensive and may require

maller time steps due to explicit time integration. We focus on

chieving efficient collision avoidance that is stable and natural in

oth sparse and dense distributions of agents. 

Continuum, macroscopic, approaches—such as ‘Continuum 

rowds’ [9] , a crowd model that uses continuum mechanics to

imulate pedestrian flow—are particularly suitable for dense, ho-

ogeneous crowds and complex environments [11] . Unfortunately,
he traditional regime of pure continuum models tends to smooth

ut local agent behaviors, because the agents are represented

y particles carried by force fields. This can lead to unrealis-

ic agent behaviors, with agents accelerating and changing direc-

ion without respecting realistic biomechanical limitations. These

hortcomings motivated research on hybrid methods. For example,

arain et al. [10] simulated dense crowds with a hybrid, Eulerian–

agrangian particle-in-cell approach and the unilateral incompress-

bility constraint (UIC), which has proven to be an effective as-

umption for crowds. Subsequently, frictional forces were taken

nto account in modeling crowd turbulence [12,13] , which is es-

ential in extra high-density scenarios. This has also inspired us to

reat dense agent collisions with a frictional contact model simi-

ar to dry sand simulation [14] . Golas et al. [8] proposed a hybrid

cheme for simulating both high-density and low-density crowds

ith seamless transitions. 

Many researchers have proposed local force-based models

15–18] . In most of these models, individual agents are simu-

ated, and the crowds naturally form by agent interactions. Typ-

cally, the force that determines collision avoidance behavior is

 function of inter-agent distance. However, the function is typ-

cally scenario-dependent and hardly easy to choose. Recently,

aramouzas et al. [4] proposed a collision avoidance approach

hose motivation is the experimental observation that humans do

ot avoid collisions according to a specific distance threshold, but

ather by the estimated time to collision, whose anticipatory be-

avior energy follows a power law. Similar to concurrent work [19] ,

ur method also employs time-to-collision for local agent collision

voidance. However, whereas the method of Karamouzas requires

 computationally costly global matrix assembly and solve for each

ime step, ours is local and independent for each agent, allow-

ng parallelism, which yields a fast, real-time frame rate for up to

0 0,0 0 0 agents. 

As an alternative to forces, reciprocal velocity obstacles were

roposed for multi-agent navigation [20] . Agents avoid collisions

y choosing a velocity that lies outside the velocity obstacles of

ther agents. Guy et al. [21] demonstrated a parallel velocity ob-

tacles framework for collision avoidance. Ren et al. [22] aug-

ent velocity obstacles with velocity connections to keep agents

oving together, thus allowing more coherent behaviors. Guy

t al. [23] and He et al. [24] simulated crowds based on the

east effort principle. Yeh at el. [25] introduced composite agents

or complex agent interactions. Bruneau and Pettré [26] presented

 mid-term planning system to fill in the gap between long-

erm planning and short-term collision avoidance. In the work of

im et al. [27] , multi-agent simulation and physical interaction

ith obstacles were nicely combined to generate interesting new

ehaviors. 

Most of the aforementioned algorithms extrapolate the agents’

ositions to a future time step, and then deterministically plan

gent behavior. However, stochastic approaches are also possible.

urstedde et al. [28] suggested a cellular automata approach to

edestrian dynamics, where the simulation space is discretized

nto a grid, and pedestrians move from one grid cell to an-

ther based on transition probabilities. Kim et al. [29] proposed

 statistical inference approach to predict agent paths. Warp-

river [30] models agent interactions as space-time collision

robabilities—agents sample intersections between their trajectory 

nd possible upcoming collisions and select the trajectory that has

he lowest collision probability. 

.2. Position-Based Dynamics 

Position-Based Dynamics (PBD) was proposed by Müller

t al. [5] to quickly simulate deformable objects for applica-

ions in which simulation speed and robustness take priority over
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Algorithm 1 Position-based crowd simulation loop. 

1: for all agent i do � §3.2 

2: calculate v p 
i 

from the velocity planner 

3: calculate a blending velocity v b 
i 

from v p 
i 

and v n 
i 

4: x ∗
i 

← x n 
i 

+ �t v b 
i 

5: end for 

6: for all agent i do 

7: find neighboring agents S i = { s i 1 , s i 2 , . . . , s i m } 
8: end for 

9: while iteration count < max stability iterations do 

10: for all agent i do 

11: compute position correction �x i � §3.3 

12: x n 
i 

← x n 
i 

+ �x i 
13: x ∗

i 
← x ∗

i 
+ �x i 

14: end for 

15: end while 

16: while iteration count < max iterations do 

17: for all agent i do 

18: compute position correction �x i � §3.3, §3.4, §3.5 

19: x ∗
i 

← x ∗
i 

+ �x i 
20: end for 

21: end while 

22: for all agent i do 

23: v n +1 
i 

← (x ∗
i 

− x n 
i 
) / �t 

24: Add XSPH viscosity to v n +1 
i 

� §3.8 

25: Clamp v n +1 
i 

� §4.7 

26: x n +1 
i 

← x ∗
i 

27: end for 
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physical realism, such as in computer games. The method works by

directly and iteratively computing the positions of objects based on

a set of positional constraints. The easily implementable computa-

tion involves local Gauss–Seidel projections for each constraint. 

Since then, similar position-based simulation methods have

been introduced, whose common property is that they do not ex-

plicitly compute physical quantities such as momentum and forces,

but instead work directly with positions. One such method is Nu-

cleus, developed by Stam [31] . Both PBD and Nucleus have become

popular in physics-based animation because of their simplicity and

robustness, and they have been implemented in commercial ani-

mation frameworks; Autodesk’s Maya uses Nucleus as a constraint

solver for cloth animation, and NVIDIA PhysX implements a ver-

sion of PBD. This popularity has inspired work on expanding the

simulation capabilities of these methods. Macklin et al. [14] pre-

sented a unified PBD solver for various natural phenomena, in-

cluding fluids and smoke. Barreiro [32] added velocity conforma-

tion constraints to allow simulation of viscous fluids. XPBD was

proposed recently to eliminate the iteration count and time step

dependence of PBD [33] . 

Even though PBD traditionally defines geometric constraints

among particles, it can also approximate force responses from con-

tinuum mechanics. Bender et al. [34] formulated continuum ener-

gies as PBD constraints. The close relationship between PBD and

popular continuum-mechanics-based discretization was further ex-

plored in recent work on optimization-based methods for real-time

animation [35,36] . Bouaziz et al. [37] introduced projective dynam-

ics, a position-based method that is a more physically principled

modification to PBD, and Narain and colleagues [38] showed that

projective dynamics is a special case of the Alternating Direction

Method of Multipliers (ADMM), which is a general-purpose opti-

mization algorithm. A more complete survey of PBD is provided by

Bender et al. [39,40] . 

3. Algorithm 

3.1. Overview 

Algorithm 1 outlines our simulation loop (the comments

therein indicate sections of the paper that explain the key steps),

which is similar to that for PBD, with several modifications. Each

agent i , where i = 1 , 2 , . . . , N, is represented as a fixed-sized parti-

cle with position x i ∈ R 

2 and velocity v i ∈ R 

2 . To represent mul-

tiple “species” of agents, we treat each particle as a circle with

radius r i and mass m i . When stepping from time n to time

n + 1 in a conventional PBD simulation loop for passive physi-

cal simulations, a forward Euler position prediction is first com-

puted as x ∗
i 

= x n 
i 

+ �t( v n 
i 

+ �t f ext (x n 
i 
)) , where f ext represents ex-

ternal forces such as gravity. In position-based crowds, x ∗
i 

must

be computed differently, taking into account the velocity planning

of each agent. In particular, we compute x ∗
i 

based on a blending

scheme between a preferred velocity and the current velocity v n 
i 
.

With this alone, particles would passively advect in the velocity

field, completely ignoring the existence of other particles. PBD de-

fines constraint functions on the desired locations of the particles.

Both equality constraints C k (x 1 , x 2 , . . . , x N ) = 0 and inequality con-

straints C k (x 1 , x 2 , . . . , x N ) ≥ 0 are supported. Hence, the task is to

search for a correction �x i such that x n +1 
i 

= x ∗
i 

+ �x i satisfies the

constraints. The correction is multiplied by a stiffness k ∈ [0, 1] as-

sociated with the constraint type, which provides flexibility in con-

trolling the magnitude of the constraint correction. After the new

positions are computed, the agent velocities can be updated as

v n +1 
i 

= (x n +1 
i 

− x n 
i 
) / �t . This update guarantees stable agent veloci-

ties as long as the constraint projection is stable. 

Our position-based formulation includes several modifications

to the standard PBD scheme as well as additional constraints for
hort-range and long-range collision avoidance between agents, as

escribed in the following sections. 

.2. Velocity blending 

Agent level roadmap velocity planning describes high-level

gent behaviors. Local behavior may be influenced by factors such

s social or cognitive goals, while global behavior may be specified

y a particular walking path. Roadmap planning is an orthogonal

omponent to our constraint-based approach. 

In the physics-based simulation of solids and fluids, particles

enerally retain their existing velocities. In particular, as demon-

trated in [37] , the implicit Euler time integration of a physical

ystem can be formulated as an minimization problem that bal-

nces the ‘momentum potential’ ‖ M 

1 / 2 (x − (x n + �t v n )) ‖ 2 
F 
/ 2�t 2 

nd other potential energies, where M is the mass matrix. In multi-

gent crowd simulation, it is similarly more desirable to include

he inertial effect before predicting an agent’s desired velocity. De-

oting the preferred velocity given the planner as v p 
i 
, we calculate

he agent velocity v b 
i 

as a linear blend between v p 
i 

and the current

elocity v n 
i 
, as follows: 

v b i = (1 − α) v n i + αv p 
i 
, (1)

here α ∈ [0, 1] is the velocity blending parameter. We set α =
 . 0385 in all our simulations. A more adaptive choice, such as

he density-based blending factor in [10] , can also be used in our

ramework. 

.3. Short-range interaction 

As in standard position-based methods, we model short-range,

ocal particle contacts using an inequality distance constraint: 

C(x i , x j ) = ‖ x i − x j ‖ − (r i + r j ) ≥ 0 , (2)
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Fig. 2. Predictive collision avoidance model. (a) Starting with particles at x n 
i 

and 

x n 
j 
, PBD estimates their positions x ∗

i 
and x ∗

j 
at the next time step. We estimate a 

discrete time to collision ˆ τ using their trajectories. This results in ˆ x i, j = x n 
i, j 

+ ̂  τv i, j . 

When further advanced in time by �t , particles collide at ˜ x i and ˜ x j . (b) Projecting 

these collision constraints resolves the collision between ˜ x i and ˜ x j . (c) We compute 

the relative displacement d from time ˆ τ to ˜ τ . (d) d is decomposed into contact nor- 

mal d n and tangential d t components. (e) The tangential contribution of the relative 

displacement is distributed to x ∗
i 

and x ∗
j 
, thus avoiding the collision. 
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here r i and r j are the radii of agents i and j . Since each constraint

n a PBD-based framework has an associated stiffness, we resolve

he constraint with a stiffness of 1.0 in order to prevent the agent

isks from unrealistically overlapping in the next time step. 

.4. Long-range collision 

Karamouzas et al. [4] describe an explicit force-based scheme

or modeling crowds. We design a similar scheme in the form of a

osition-based constraint. As in their power law setting, the lead-

ng term is the time to collision τ , defined as the future time when

wo disks representing particles i and j will touch each other. As in

4] , it can be shown that 

τ = 

b − √ 

b 2 − ac 

a 
, (3) 

here 

a = 

1 

�t 2 
‖ x ∗i − x ∗j ‖ 

2 , (4) 

b = − 1 

�t 
(x i − x j ) · (x ∗i − x ∗j ) , (5) 

c = ‖ x i − x j ‖ 

2 − (r i + r j ) 
2 . (6) 

No potential energies associated with forces are required in our

ramework. To facilitate collision-free future states, we directly ap-

ly a collision-free constraint on future positions. Recall that in our

imulation loop, the predicted position of particles i and j in the

ext time step are 

x ∗i, j = x n i, j + �t v b i, j , (7) 

here v b 
i, j 

is defined in (1) , and the subscripts indicate that the

bove equation is defined exclusively in the context of particles i

nd j . 

We estimate a future collision state between i and j using τ . We

rst compute the exact time to collision using (3) . Valid cases are

hose with 0 < τ < τ 0 , where τ 0 is a fixed constant, set to τ0 = 20

n our experiments unless noted otherwise. After pruning out the

nvalid cases, we process the remaining colliding pairs in paral-

el ( Section 4.1 ). We define ˆ τ = �t ∗ � τ/ �t	 , where � · 	 denotes

he floor operator. This simply clamps τ to provide a discrete time

lightly before the predicted contact. With ˆ τ , we have 

ˆ x i, j = x n i, j + ˆ τv b i, j . (8) 

ote that ˆ x i, j are similar to x n 
i, j 

in the traditional collision con-

traint case (2) and are still in a collision free state. Stepping for-

ard will cause the actual penetration. We denote the colliding po-

itions with 

˜ x i, j = x n i, j + ˜ τv b i, j , (9) 

here ˜ τ = �t + ˆ τ . We enforce a collision free constraint on 

˜ x i and

˜ 
 j . Note that ˜ x i, j is a function of x ∗

i, j 
; therefore, it is still essen-

ially a constraint on x ∗
i, j 

. Due to its anticipatory nature, high stiff-

ess on this constraint is not necessary. Since the particles repre-

ent agents, we want to prevent unrealistic agent locomotion that

ight result from a positional correction. To that end, instead of

 full overly-stiff correction for the impending collision, we mul-

iply the correction by a stiffness of k exp (− ˆ τ 2 / τ0 ) , where k is a

ser-specified constant. 

Other than [4] , previous work such as OpenSteer [16] proposed

 similar long-range collision avoidance scheme. However, our ap-

roach differs in several aspects. First, OpenSteer’s avoidance be-

avior is distance dependent, and is activated starting from a cer-

ain pairwise distance. Second, for resolving a potential collision

ite, OpenSteer fully adjusts the agent’s velocity, while our method

akes into account time-to-collision and PBD stiffness as inputs
o the magnitude of the agent’s correction. Time-to-collision was

hown to be a better predictor for collision avoidance behavior

han pairwise distance (see Section 2.1 ). 

.5. Collision avoidance model 

A traditional collision response is not always satisfactory and

ealistic ( Fig. 3 a), since agents do not make any long-range at-

empt to avoid the upcoming collision. Furthermore, the long-range

ollision constraint proposed in Section 3.4 can slow down the

gents. Fig. 2 illustrates this process—in a typical long-range re-

ponse, agents correct their motions according to the contact nor-

al d , a vector that has a component d n in the direction oppo-

ite to the agent’s trajectory. This behavior is often undesirable in

ense scenarios like those shown in Fig. 1 . 

To amend such undesirable behavior, we present a novel col-

ision avoidance model. We observed that the tangential compo-

ent of long-range collision response is often desired, effectively

ausing the agents to divert sideways in response to the predicted

ollision. Hence, our avoidance model preserves only the tangen-

ial movement in such collisions. The total relative displacement is

alculated as 

d = ( ̃  x i − ˆ x i ) − ( ̃  x j − ˆ x j ) , (10) 

hich may be decomposed into contact normal and tangential

omponents, as follows: 

d n = (d · n ) n , (11) 

d t = d − d n , (12) 

here n = ( ̃  x i − ˜ x j ) / ‖ ̃  x i − ˜ x j ‖ is the contact normal. We preserve

nly the tangential component in the positional correction to x ∗
i, j 

.

his provides an avoidance behavior ( Fig. 3 b) and prevents agents

rom being pushed back in a dense flow. 

.6. Frictional contact 

Researchers have proposed that for medium and high densities

he motion of crowds can be approximately modeled using tech-

iques inspired from fluid dynamics and granular flows [41–43] ,

nd these granular and fluid analogies have inspired crowd simu-

ation algorithms [12,13] . While our method also builds on these

deas, experiments conducted by Seyfried et al. [44] demonstrating

 relationship between the velocity and the density of agents in

 crowd motivated us to offer a degree of control on how much

gents slow down in high-density simulations. The short-range

onstraint ( Section 3.3 ) does not allow such control. Even though
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edcba
Fig. 3. Orthogonal crossing. (a) With the traditional collision constraint (2) , agents collide and are unable to pass. (b) Agents that employ our avoidance model successfully 

cross paths without collision. 
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the constraint resolves possible collisions between agents, it does

not slow down agents by limiting their tangential displacement. 

Consequently, following the PBD constraint for granular mate-

rial proposed by Macklin et al. [14] , we incorporate a contact fric-

tion constraint between pairs of neighboring agents, as follows:

During a time step, if agents are predicted to overlap, we resolve

the potential collision by projecting particles a distance d given

by the conventional collision constraint (2) . Then, we calculate the

total relative displacement (10) in the time step, and decompose

it into the contact normal (11) and tangential (12) components.

Assuming that the agents have similar mass, we add 0.5 d t min (1,

μ�x ‖ d ‖ ), where μ∈ [0, 1], to the conventional correction for each

particle. This correction limits the tangential movement, contrary

to our approach in the avoidance model ( Section 3.5 ). 

3.7. Maximum speed limiting 

After the constraint solve, we further clamp the maximum

speed of the agents to better approximate real human capabilities.

In our implementation ( Algorithm 1 ), we limit the magnitude

of the agent’s velocity to a maximum value. Alternatively, we

achieved similar results by clamping the maximum acceleration

correction allowed per the constraint type, instead of just clamping

the entire movement in the time step. This may be desirable when

we wish to preserve full positional correction for certain constraint

types, such as the short-range contact, but limit the allowed posi-

tional correction of other types, such as the long-range collision

avoidance. This form of clamping is roughly equivalent to modify-

ing a constraint’s stiffness and τ 0 . 

3.8. Cohesion 

To encourage more coherent agent motions, we add artificial

XSPH viscosity [45,46] to the updated agent velocities. Specifically,

v i ← v i + c 
∑ 

j 

( v i − v j ) W (x i − x j , h ) , (13)

where W ( r , h ) is the Poly6 kernel for SPH [46] . In our simulation,

for agents represented by discs with radius 1, we use h = 7 and

c = 217 . 

3.9. Walls and obstacles 

Agents can interact with walls and other static obstacles in the

environment. To prevent agents from locomoting into walls and

other static obstacles, we employ a traditional collision response

(2) between the agent’s predicted position and the nearest point

on the obstacle. The obstacle’s collision point is assigned infinite

mass, so that any positional correction applies solely to the agent. 
. Experiments and results 

.1. Setup and parameter settings 

We implemented our framework in CUDA on an Nvidia GeForce

T 750M GPU. We set �t = 1 / 48 s for all the experiments (2 sub-

teps per frame). We solve each constraint group in parallel, em-

loying a Jacobi solver, with a delta averaging coefficient of 1.2. To

nd neighboring agents, we use two hash-grids with different cell

izes for short and long-range collisions. This is more efficient than

sing one grid for both, since the long-range grid covers a bigger

ollision radius. Each grid is constructed efficiently and in parallel.

ee [14,47] for additional details. 

In our simulations, we use 1 stability iteration to resolve con-

act constraints possibly remaining from the previous time step,

nd 6 iterations in the constraint solve loop. Additional iterations

an increase stability and smoothness albeit at increased computa-

ional cost. 

For agent rendering and online locomotion synthesis, we used

nreal Engine 4.15. Clamping the agent’s skeletal positional accel-

ration and rotational velocity allows smoother locomotion. Addi-

ionally, we applied a uniform motion scaling of about 30. The mo-

ion rendered is at approximately 5 times the simulation rate. 

We demonstrated the robustness of our position-based frame-

ork in a variety of scenarios. To simplify the experiment setup

nd unless otherwise stated, we modeled all agents using a disk

ith radius 1, and use the same width for our humanoid agents

n the rendering stage. For smoother motion, we allow an expan-

ion of the agent’s disk radius by 5% during collision checks. Unless

therwise stated, we chose τ0 = 20 for all our experiments. The

arger the value of τ 0 , the earlier the agents adjust their trajec-

ories to avoid each other ( Fig. 4 ). For each benchmark, we used

 simple preferred velocity planner, where the preferred veloc-

ty of each agent points to the closest user-scripted goal. We also

lightly varied the agent’s preferred velocity around a mean of 1.4,

o achieve more realistic simulation that corresponds to field stud-

es of pedestrian walking speed [48] . Table 1 presents timing infor-

ation. Table 2 provides a complete list of parameter values used

n the experiments. 

.2. Benchmarks and analysis 

.2.1. Sparse passing (low count, long-range collision) 

We experimented with two groups of agents locomoting to-

ards each other ( Fig. 6 ). The agents in each group are positioned

n a loose grid formation with an initial separation distance. To

void collisions, the agents use the constraint of Section 3.4 . In

his scenario, the agents organize into narrow lanes and pass each

ther easily. 
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Fig. 4. Agents locomoting past each other, showing the effect of the time-to-collision τ 0 on their motions. The larger the value of τ 0 , the earlier the agents begin maneu- 

vering according to the collision avoidance model ( Section 3.5 ). 

Fig. 5. Groups of agents passing each other using the avoidance model. (a) Agents organize into boundary fronts in preparation for collision avoidance. (b) Agents huddle in 

noticeable alternating thick lanes. (c) Agents successfully pass each other. 

Table 1 

Timings (excluding rendering times). All experiments use �t = 

1 / 48 , with 6 iterations per time step. LR: long-range collision 

constraint; A: avoidance model constraint. 

# Agents LR A ms/frame 

Sparse passing 1,600 On – 11 .27 

Sparse passing 1,600 – On 11 .61 

Dense, low count 1,600 On – 12 .03 

Dense, low count 1,600 – On 11 .34 

Dense, high count 10,032 On – 14 .06 

Dense, high count 10,032 – On 13 .63 

Bears and rabbits 1,152 – On 11 .86 

Dense ellipsoid 1,920 – On 10 .06 

Circle 250 On – 11 .09 

Circle 1,0 0 0 On – 12 .35 

Two crossing groups 210 On – 9 .25 

Four crossing flows 800 On – 8 .13 

Proximal behavior 50 On – 10 .12 

Proximal behavior 50 – On 10 .13 

Target locomotion 192 On – 10 .42 

Bottleneck 480 – – 11 .99 

Bottleneck 3,600 – – 17 .76 

Bottleneck 100,048 – – 43 .66 

4

 

e  

n  
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F

o
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a  

c  

s  

a  
.2.2. Sparse passing (low count, avoidance) 

This scenario is identical to Experiment 4.2.1 , but the agents

mploy the constraint of Section 3.5 to avoid collisions. In this sce-

ario, the agents form thicker lanes ( Fig. 5 ), which separate into

ubgroups. 
ig. 6. Two groups of agents exchanging positions. (a) The groups approaching each 

ther. (b) Collisions are avoided using the long-range collision avoidance constraint. 
F

m

.2.3. Dense passing (low count, long-range collision) 

A total of 1600 agents are split into two groups, with a sep-

rating distance of 2.5 ( Fig. 7 a). We used a higher and denser

rowd of agents. To avoid collision, the agents employ the con-

traint of Section 3.5 . Because of the dense agent setting, the two

gent groups do not easily pass each other, and some bottleneck
ig. 7. High-density agent simulation. (a) Long-range collision. (b) Avoidance 

odel. 
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Fig. 8. High density and high agent count. (a)–(c) Groups of agents avoid each other using long-range collision. (d)–(f) Using the avoidance model. 
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groups are formed. Eventually, the agents pass, avoiding unrealistic

collisions. 

4.2.4. Dense passing (low count, avoidance) 

This experimental setup is identical to Experiment 4.2.3 . To

avoid collision, the agents employ the constraint of Section 3.5 . In

this scenario, the agents form thicker lanes, which separate into

subgroups ( Fig. 7 b). 

4.2.5. Dense passing (high count, long-range collision) 

A total of 10,032 agents are split into two groups ( Fig. 8 a–c)

with a separating distance of 3.5. 

4.2.6. Dense passing (high count, avoidance) 

This experiment setup is identical to Experiment 4.2.5 . To avoid

collision, the agents employ the constraint of Section 3.5 . In this

scenario, the agents form thicker lanes, which separate into sub-

groups ( Fig. 8 d–f). 

4.2.7. Bears and rabbits 

In this experiment, we showcased how a Lagrangian PBD

scheme may be employed to model agents of different sizes

( Fig. 9 ). We simulated a group of rabbits passing through a group

of bears, totaling 1152 agents. The rabbits had size 1.0, while the
Fig. 9. A group of smaller agents (rabbits) passing through a group of larger ones 

(bears). 
ears had a size ranging from 2.5 to 4.0. Since bears are less in-

lined than rabbits to change their paths, we assigned the bears

 mass that is approximately 30 times greater than that of the

abbits. 

.2.8. Dense ellipsoid 

This simulation comprises 1920 agents. To reach their goals, an

llipsoid-shaped group of agents ( Fig. 10 ) with an initial separation

istance of 3.3 must locomote through a larger, rectangular group

f agents with a separation distance of 3.0. Throughout the simu-

ation, the small group retains its shape and it successfully passes

he larger group. 

.2.9. Circle 

In this scenario, agents are arranged in circle formation

 Fig. 13 ). Each agent has the goal of locomoting to the antipodal

osition on the circle. The paths of all agents to their destination

asses through the center of the circle, which allows us to observe

ow they avoid collision despite an increasing number of possible

eighbor contacts, all with varied paths. We tested this scenario

ith the long-range collision constraint and observed a minor in-

rease in the computational cost between 250 and 10 0 0 agents. In

oth cases, agents converged and formed one group in the center.

fter a few seconds, the group rotated, with many of the agents

reaking free of the group and locomoting to their goals ( Fig. 11 ). 
Fig. 10. A small ellipsoid shaped group passing through a larger group. 
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Fig. 11. Circle of 250 agents. (a) Agents locomote towards their antipodal position goals on the circle. Multiple potential collisions between agents are avoided. (b) Agents 

converge on the center of the circle. All agents have slowed down; however, the entire group eventually rotates, thus avoiding a stalemate. (c) Agents successfully reach their 

goals. 

Fig. 12. Proxemic group behavior. (a) Initial state. (b) Agents avoid each other using the long-range collision model, while creating lanes. (c) Agents avoid each other using 

the avoidance model. 

Fig. 13. Starting conditions of the circle experiment. Agents have different preferred 

velocities, around a mean of 1.4 ( Table 2 ). 

Table 2 

Default parameter values used in the experiments. 

Parameter Value Refer to 

# Solver Iterations 6 Section 4.1 

# Stability Iterations 1 Section 4.1 

Delta averaging coefficient 1.2 Section 4.1 

Time step 1/48 Section 4.1 

Time-to-collision τ 0 20 Section 3.4 

Short-range stiffness 1.0 Section 3.3 

Long-range stiffness 0.24 Section 3.4 

Avoidance model stiffness 0.24 Section 3.5 

Nearest neighbor radius expansion 5% Section 4.1 

Maximum acceleration 5.1 Section 4.1 

Velocity blending parameter 0.0385 Section 3.2 

Preferred velocity 1.4 Section 4.1 

Friction parameter μ 0.21 Section 3.6 

XSPH c poly6 7 Section 3.8 

XSPH h poly6 217 Section 3.8 

Fig. 14. Target locomotion. The goal is based on the initial position, which is trans- 

lated to the right, and then randomly exchanged with another agent. The result 

is multiple intersecting paths. Using the long-range collision avoidance constraint, 

agents reach their respective goals with no noticeable slowdown. 
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.2.10. Proximal behavior, avoidance model 

Two groups of 50 agents start in tightly packed formations,

nd must pass each other in a narrow corridor with limited col-

ision avoidance space ( Fig. 12 b). This benchmark demonstrates

hat our novel avoidance model creates proxemic behavior in agent

roups [24] . 

.2.11. Proximal behavior, long-range collision 

Here, we used the same initial conditions as in Experiment

.2.10 . We observed lane formation and splitting of the original

roup ( Fig. 12 a). 

.2.12. Target locomotion, long-range collision 

192 agents start in a uniform random grid setting at a separa-

ion distance of 5.5 ( Fig. 14 ). The locomotion targets are in a sim-

lar but translated grid pattern, randomly perturbed with additive
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Fig. 15. A group of agents passing through a narrow corridor. (a) Agents huddle on approaching corridor’s entrance. (b) A semi-circular arch forms as agents enter a narrow 

corridor. (c) Agents successfully exit. 

Fig. 16. Two orthogonally crossing groups. Top left: Initial configuration, with the 

red agents locomoting leftward and the blue agents locomoting downward. Top 

right: Agents approach each other, and start to divert slightly in response. Bot- 

tom right: The groups meet, and the agents of each group start forming alternating 

lanes. Bottom left: Self-organized into diagonal lanes, agents cross each other, miti- 

gating congestion. (For interpretation of the references to color in this figure legend, 

the reader is referred to the web version of this article). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17. Four diagonally crossing agent flows. (a) As the flows approach at the cen- 

ter, agents start diverting to mitigate a temporary congestion that develops. (b) 

Agents continue to make progress, albeit at a slow pace. 

Fig. 18. Explicit force-based power law [4] . (a) In a sparse setting, most agents suc- 

cessfully avoid collisions (at most 3 agent pairs colliding). (b) In a dense setting, the 

agents collide, overlap, and are unable to pass smoothly. 
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uniformly distributed random noise. Agents are able to reach their

respective goal with minimal interference. 

4.2.13. Bottleneck 

We demonstrated our method on a bottleneck scenario with

varying number of agents ( Fig. 15 ). Agents must pass through a

narrow corridor to reach their goal. In this scenario, we observed

jamming and arching near the corridor’s entrance, as well as the

formation of pockets, a phenomena observed in realistic crowds,

which was also reported in [13,23] . 

4.2.14. Two orthogonally crossing groups 

Two groups of 110 agents orthogonally cross each other

( Fig. 16 ). The leading agents in both groups slow down and de-

viate from their course, attempting to avoid the oncoming colli-

sions. Subsequently, agents form clusters that approximate diago-

nal lanes, successfully crossing each other, a phenomenon that is

also observed in real crowds [49] . 

4.2.15. Four diagonally crossing flows 

In a scenario of four crossing agent flows ( Fig. 17 ) with the lo-

comotion goal of each flow at the opposite corner, the main diffi-
ulty is that the agents can potentially become stuck in congestion

t the intersection of the flows. Additionally, we want agents to

void excessive deviation from their locomotion goals. Using the

ong-range collision avoidance constraint, agents mange to achieve

heir locomotion goals and avoid major congestion. We also ob-

erved vortex-like behavior once the flows meet, which is a form

f lane formation, similar to [9] . 

.3. Comparison 

The method of Karamouzas et al. [4] is considered a state-of-

he-art model for explicit force-based modeling of pedestrian be-

avior, and it has been validated against human behavior. We im-

lemented this method based on code obtained from the authors.

or our comparison, we chose the same parameter settings and

ime step as in our method ( Section 4.1 ). Using 1344 agents, we

erformed experiments in the following two settings ( Fig. 18 ): 

.3.1. Crowd passing (sparse) 

For the sparse setting ( Fig. 18 a), we used a separating distance

f approximately 4.5 between agents. Agents preformed well and

voided collisions, managing to pass with minimal interference to

he opposing group. Lane patterns emerged. 

.3.2. Crowd passing (dense) 

In the dense setting ( Fig. 18 b), we used a separation distance of

pproximately 3.3. For major parts of the simulation, agents were
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Fig. 19. Number of overlapping agent pairs in the crowd passing (dense) experi- 

ment, with agent collision avoidance using the method in [4] . The two groups meet 

around second 5. Note that out of 1344 agents, there are a significant number (up 

to 246) of colliding agent pairs by second 15 and later. 
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ot able to maintain their trajectories or avoid collisions with the

pposing group. Some of these collisions were not resolved, lead-

ng to unrealistic behavior for most of the simulation ( Fig. 19 ). 

Both the above experiments ran interactively, averaging

2.12 ms/frame and 13.74 ms/frame for the sparse and dense sce-

arios, respectively. Increasing the number of agents or the den-

ity of agents resulted in slower run-times. From these experi-

ents, we noticed that the power law method does not provide a

ollision-free model for dense crowds. Nevertheless, careful param-

ter tuning or smaller time steps may help, albeit at the expense

f efficiency hence usability. 

. Limitations and future work 

Our approach has several limitations. First and foremost, mod-

ling agents as simple particles hardly aspires to simulate real

edestrians, unlike several other notable efforts on multi-human

imulation [50–52] . 

Even though ours is a simple and stable crowd simulation

ramework, it requires a certain amount of parameter tuning to

aximize realism (see Table 2 ). Designing metrics to evaluate the

ealism of crowd simulations is a problem in and of itself, and it is

utside the scope of our present work. Investigating this topic in

uture work would call for a further quantitative analysis of time-

o-collision and other anticipatory metrics. 

Currently, our method employs a simple navigational scheme

or planning each agent’s velocity in the next time step. The plan-

er directs agents to their locomotion goal without considering

tatic objects or other agents. Furthermore, the current naviga-

ional scheme does not consider directing agents to other, longer

aths towards their goals that might nevertheless be shorter in

ime. Replacing this component with a dynamic path planning

cheme should lead to more realistic simulation results. 

Since PBD is a deterministic framework, there is in principle

 chance agents will not be able to avoid precisely head-on col-

isions; however, we did not observe any such cases in our experi-

ents. Such collisions may be averted by adding a small stochastic

omponent to the agent’s trajectory [53] . 

Our position-based approach allows simple integration into an

xisting PBD framework. By adding new constraints, our robust,

arallel framework can easily incorporate more complex crowd be-

aviors with minimal run-time cost. We also plan to explore other

onstraints, such as clamping the magnitude of turning and back-

ard motion of agents, which we believe will yield more realis-

ic crowd motion. Finally, experimenting with different online lo-

omotion synthesis methods can lead to more interesting agent

nteractions. 
. Conclusion 

We have presented a discrete algorithm for simulating crowds

hat is inspired by Position-Based Dynamics. First, we showed

ow to adapt preexisting PBD constraints to control the motion

nd short-range collision avoidance behavior of each agent. Sec-

nd, we proposed a novel long-range collision avoidance constraint

ithin the PBD framework. Third, we demonstrated interactive

rame rates for up to 10 0,0 0 0 agents simulated in CUDA on an

vidia GeForce GT 750M GPU. Finally, our method easily integrates

ith readily available visual effects and gaming tools that employ

BD. 

Our solution is flexible and produces interesting patterns and

mergent crowd behavior with no user intervention, such as

roups of agents passing each other seamlessly, as well as the

pontaneous formation of traffic lanes and subgroups of agents. We

emonstrated our crowd simulation algorithm on groups of agents

f various sizes, arranged in varying densities, using different mix-

ures of PBD constraints. 

By varying constraint parameters, an animator using our ap-

roach can easily control the motions of virtual crowds. Such qual-

ties are available generally with larger time step choices than with

xisting explicit time integration schemes for crowd simulation.

hus, our method offers interactive, collision-free crowd simulation

ith guaranteed stability and easy controllability. 

upplementary material 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cag.2018.10.008 . 
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