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Abstract—Various methods have been proposed for simulating
crowds of agents in recent years. Regrettably, not all are compu-
tational scalable as the number of simulated agents grows. Such
quality is particularly important for virtual production, gaming,
and immersive reality platforms. In this work, we provide an
open-source implementation for the recently proposed Position-
based dynamics approach to crowd simulation. Position-based
crowd simulation was proven to be real-time, and scalable for
crowds of up to 100k agents, while retaining dynamic agent and
group behaviors. We provide both non-parallel, and GPU-based
implementations. Our implementation is demonstrated on several
scenarios, including examples from the original work. We witness
interactive computation run-times, as well as visually realistic
collective behavior.

Index Terms—crowd simulation, collisions avoidance, con-
straints

I. INTRODUCTION

Simulation of virtual agents, and crowds of agents, is
important in multiple visual media domains, from Virtual and
Augmented reality, games, to educational platforms. Simulat-
ing crowds is driven by a combination of algorithms, each
focusing on different aspects [6]. Such aspects include visual
animation and rendering of crowd agents; modeling of the
crowd to be simulated; and computing movement of each agent
within the crowd.

We address the task of implementing a framework for
computing virtual agent movements; i.e., in each time step of
the simulation, each agent must determine in which direction
to move such that realistic individual and collective behaviors
result. Agents share the same environment. Therefore, they
can interact, and potentially collide with each other. A goal
of a algorithm that computes agent movement is to avoid
such collisions. Unfortunately, computing collision-free agent
motion is difficult, due to the complexity of such dynamic
interactions, especially in dense settings.

Researchers have proposed various collision avoidance
methods [1], [2], [5], [8]. Recently, Karamouzas et al. [3] pro-
posed a collision avoidance method based on experimental ob-
servations of human crowds. The method is an explicit force-
based scheme, where collision avoidance is a function of inter-
agent time-to-collision. Weiss and colleagues [8] proposed a
similar approach, using Position-Based Dynamics constraints
to simulate agent dynamics, for up to 100k agents, in real-
time. Additionally, their approach is capable in simulating both
sparse, and dense scenarios.

Here, we present an implementation of Position-based
crowd simulation [7], [8]. Our solution is open source1,
and is implemented with C++, for both non-parallel, and
GPU-enabled machines. As far as we are aware, this
is the first open source implementation of a Position-
based dynamics framework for crowd simulation [4].

Fig. 1: Agents locomote to-
ward their antipodal goal on
the circle.

II. DESIGN
AND IMPLEMENTATION

A. Structure

Our goal was to allow users
to easily run simulation scenar-
ios. To that end, a scenario can
either be hard-code, or loaded
from a file. The primary com-
ponents of each simulation sce-
nario are:

1) Spatial Environment:
Crowd simulations scenarios are conducted in various envi-
ronments. To simplify implementation, we assume the envi-
ronment is a plane. Agents are free to locomote within the en-
vironment, except for obstacles. We define such obstacles with
line segments, that are impassable for agents. The environment
is discretized via a spatial hash-grid [8]. Grid boundaries
are predetermined, according to the environment. The grid is
further divided to cells, that are later used to determine agent
collisions (Section II-B).

class Simulation
{
Obstacle **obstacles;
Grid *grid;
Agent **agents;
...

}

2) Locomoting Agents: Each agent has several simulation
properties, including current and goal position, velocity, pre-
ferred velocity, mass, and group membership.

In each time step, agent advance from the current, to
the goal position. All agents start locomoting from standing
still. If there are no potential collisions, agents locomote
with their preferred velocity directly to their goal. Otherwise,
agents preform local collision avoidance according to the
position-based constraint framework. Agent’s mass is used in

1https://github.com/tomerwei/pbd-crowd-sim
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class Agent
{
float2 x; //Current Position
float2 goal; //Goal Position
float2 v; //Current Velocity
float vPref; //Preferred Velocity
float mass;
int group;
...

}

constraint resolve. Typically, constraints are between pairs of
agents. In case a constraint needs to be satisfied, both agents
contribute to the correction according to their corresponding
mass (Section II-A2).

Once an agent reaches its goal position, it halts. Addition-
ally, our computational framework requires other parameters,
as reported in table 2 in [8].

B. Computing a Time Step

The simulation is divided to discrete time steps (Listing 1).
At each time step, we: (1) Save agents positions (2) Compute
agent movements (3) Copy data from GPU to local CPU
memory. Note that the last step is only needed with a GPU
implementation, in case we want to save our results for
later analysis. For saving agents positions, we create a new
file where each line contains the agent identifier, and planar
position.

planAgentVelocity();
updateNeighbours();
For (int i = 1; i < iterations; i++)
{

calculateStiffness(i);
projectConstraints();

}
updatePositions();
updateVelocity();

Listing 1: Simulation time step

1) Agent Movements: Agent velocity in each time step
is derived by interpolating between agent’s current velocity,
and the agent’s preferred velocity toward its locomotion goal:
v * (1 - Ksi) + Ksi * goalV, where Ksi is the interpolating
factor, which we experimentally set to 0.05. Given the agent’s
velocity, we can derive its position in the next time step, along
with potential colliding agents. We can find potential projected
neighbours by employing the hash-grid (Section II-A1).

2) Collision Avoidance: In case of predicted collisions
between agents, we apply positional constraints. In [8], the
authors describe a variety of positional constraints. For brevity,
we present our GPU implementation for the short-range col-
lision avoidance constraint (Listing 2).

Our current constraint implementation has no user-defined
variable types, to simplify memory allocation details. Our
repository includes further system documentation, such as
details of other constraints, and an extended description of
the architecture.

III. DISCUSSION

We ran our implementation on a 2.5 GHz Intel Core i7
CPU. For GPU experiments, we used a NVIDIA GeForce GT

__device__ void pbdCollisionConstraint(
int i, //agent identifiers
int j,
float margin, //minimum distance allowed
float wi, //typically wi=wj=0.5
float wj,
float2 * x, //current agent positions
float2 * deltaX, //positional correction buffer
int * deltaXCtr//positional correction counter
)
{

float f = distance(x[i], x[j]) - margin;
if(f<0)
{

float2 contact=make_float2(0.f,0.f);
contact.x=(pos[i].x-pos[j].x)/d;
contact.y=(pos[i].y-pos[j].y)/d;
atomicAdd(&deltaX[i].x,-wi*contact.x*f);
atomicAdd(&deltaX[i].y,-wi*contact.y*f);
atomicAdd(&deltaXCtr[i],1);
atomicAdd(&deltaX[j].x,-wj*contact.x*f);
atomicAdd(&deltaX[j].y,-wj*contact.y*f);
atomicAdd(&deltaXCtr[j],1);

}
}

Listing 2: Constraint implemented as a device function, which
is called from a CUDA kernel.

750M. Our current GPU implementation is in CUDA. In the
future, we intend to implement OpenCL, and Unity compute
shader support.

Tuning a constraint-based simulation is difficult, since there
are multiple constraint parameters that affect the simulation
quality. Furthermore, agent movement needs to be smoothed
by clamping with a maximum acceleration or velocity, which
requires multiple experimental iterations. Therefore, we em-
ployed the parameters described in previous work to short-cut
the implementation process.

Finally, we plan a web implementation of our algorithm, to
allow more public experimentation. It will also be worthwhile
to combine our framework with recent machine learning
platforms.
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